\begin{tabbing} (let T = Unfold `bool` \\[0ex]i\=n \=\+\+ \\[0ex]((((((((((T 1) \-\\[0ex]CollapseTHEN (T 2))$\cdot$) \\[0ex]CollapseTHEN (T 3 \-\\[0ex])\=)$\cdot$) \+ \\[0ex]CollapseTHEN (ApFunToHypEquands `z' case $z$ of inl($x$) =$>$ $x$ $\mid$ inr($x$) =$>$ $x$ Unit 3))$\cdot$) \\[0ex] \\[0ex]CollapseTHENM (ApFunToHypEquands `z' case $z$ of inl($x$) =$>$ True $\mid$ inr($x$) =$>$ False $\mathbb{P}_{1}$ 3))$\cdot$ \-\\[0ex])\= \+ \\[0ex]CollapseTHENA ((Auto\_aux (first\_nat 1:n) ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok \-\\[0ex]:t) inil\_term)))$\cdot$) \end{tabbing}